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Problem 4.47

Because the three-dimensional harmonic oscillator potential (see Equation 4.215) is spherically
symmetrical, the Schrödinger equation can also be handled by separation of variables in spherical
coordinates. Use the power series method (as in Sections 2.3.2 and 4.2.1) to solve the radial
equation. Find the recursion formula for the coefficients, and determine the allowed energies.
(Check that your answer is consistent with Equation 4.216.) How is N related to n in this case?
Draw the diagram analogous to Figures 4.3 and 4.6, and determine the degeneracy of nth energy
level.70

[TYPO: Replace “of nth” with “of the nth.”]

Solution

The governing equation for the wave function is Schrödinger’s equation.

iℏ
∂Ψ

∂t
= − ℏ2

2M
∇2Ψ+ VΨ

With a spherically symmetric potential energy function V (r) = 1
2Mω2r2, the Laplacian operator

can be expanded in spherical coordinates.

iℏ
∂Ψ

∂t
= − ℏ2

2M
∇2Ψ+ V (r)Ψ(r, θ, ϕ, t)

= − ℏ2

2M

[
1

r2
∂

∂r

(
r2

∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂ϕ2

]
+ V (r)Ψ(r, θ, ϕ, t).

The aim is to solve for Ψ = Ψ(r, θ, ϕ, t) in all of space (0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π) for
t > 0. Assuming a product solution of the form Ψ(r, θ, ϕ, t) = R(r)Θ(θ)ξ(ϕ)T (t) and plugging it
into the PDE yields the following system of ODEs (see Problem 4.4).

iℏ
T ′(t)

T (t)
= E

1

R(r)

d

dr

(
r2R′(r)

)
− 2Mr2

ℏ2
[V (r)− E] = F

sin θ

Θ(θ)

d

dθ

(
Θ′(θ) sin θ

)
+ F sin2 θ = G

−ξ′′(ϕ)

ξ(ϕ)
= G


The third and fourth eigenvalue problems are solved in Problem 4.4. The normalized products of
angular eigenfunctions Θ(θ)ξ(ϕ) are called the spherical harmonics and are denoted by Y m

ℓ (θ, ϕ).
Solutions only exist if F = ℓ(ℓ+ 1), where ℓ = 0, 1, 2, . . ., and if G = m2 is an integer.

Y m
ℓ (θ, ϕ) =

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
eimϕPm

ℓ (cos θ),

{
ℓ = 0, 1, 2, . . .

m = −ℓ,−ℓ+ 1, . . . ,−1, 0, 1, . . . , ℓ− 1, ℓ

70For some damn reason energy levels are traditionally counted starting with n = 0, for the harmonic oscillator.
That conflicts with good sense and with our explicit convention (footnote 12), but please stick with it for this problem.
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With these results the equation for R(r) becomes

1

R(r)

d

dr

(
r2R′(r)

)
− 2Mr2

ℏ2
[V (r)− E] = ℓ(ℓ+ 1)

d

dr

[
r2

dR

dr
(r)

]
− 2Mr2

ℏ2

(
1

2
Mω2r2 − E

)
R(r)− ℓ(ℓ+ 1)R(r) = 0.

Make the substitution,

R(r) =
u(r)

r
→ dR

dr
=

ru′ − u

r2
,

to eliminate the first derivative.

d

dr
(ru′ − u)− 2Mr2

ℏ2

(
1

2
Mω2r2 − E

)
u(r)

r
− ℓ(ℓ+ 1)

u(r)

r
= 0

r
d2u

dr2
+

�
��
du

dr
−

�
��
du

dr
− r

(
M2ω2

ℏ2
r2 − 2ME

ℏ2

)
u(r)− ℓ(ℓ+ 1)

r
u(r) = 0

d2u

dr2
−
(
M2ω2

ℏ2
r2 − 2ME

ℏ2

)
u(r)− ℓ(ℓ+ 1)

r2
u(r) = 0 (1)

Make the following substitution to clean up the ODE.

r =

√
ℏ

Mω
ρ

Use the chain rule to find what the derivatives of u are in terms of this new variable.

du

dr
=

dρ

dr

du

dρ
=

√
Mω

ℏ
du

dρ

d2u

dr2
=

d

dr

(
du

dr

)
=

dρ

dr

d

dρ

(√
Mω

ℏ
du

dρ

)
=

√
Mω

ℏ
d

dρ

(√
Mω

ℏ
du

dρ

)
=

Mω

ℏ
d2u

dρ2

Then equation (1) becomes

Mω

ℏ
d2u

dρ2
−
(
M2ω2

ℏ2
· ℏ
Mω

ρ2 − 2ME

ℏ2

)
u(ρ)− ℓ(ℓ+ 1)

ρ2
· Mω

ℏ
u(ρ) = 0

d2u

dρ2
−
(
ρ2 − 2E

ℏω

)
u(ρ)− ℓ(ℓ+ 1)

ρ2
u(ρ) = 0

d2u

dρ2
− ℓ(ℓ+ 1)

ρ2
u(ρ) +

(
2E

ℏω
− ρ2

)
u(ρ) = 0. (2)

The aim now is to remove the asymptotic behavior from and hopefully simplify the ODE. If ρ is
really small, then the second term dominates; in other words, the third term is negligible
compared to the second term if ρ ≪ 1.

ρ ≪ 1 :
d2u

dρ2
− ℓ(ℓ+ 1)

ρ2
u(ρ) = 0 ⇒ u(ρ) = C1ρ

ℓ+1 +D1ρ
−ℓ
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For the solution not to blow up, set D1 = 0. The next substitution is apparent.

u(ρ) = ρℓ+1v(ρ)

Equation (2) becomes

d2

dρ2
[ρℓ+1v(ρ)]− ℓ(ℓ+ 1)

ρ2
[ρℓ+1v(ρ)] +

(
2E

ℏω
− ρ2

)
[ρℓ+1v(ρ)] = 0

ρℓ+1

[
d2v

dρ2
+

2

ρ
(ℓ+ 1)

dv

dρ
+
�
���

���ℓ(ℓ+ 1)

ρ2
v(ρ)

]
−
���������ℓ(ℓ+ 1)

ρ2
[ρℓ+1v(ρ)] +

(
2E

ℏω
− ρ2

)
[ρℓ+1v(ρ)] = 0

d2v

dρ2
+

2

ρ
(ℓ+ 1)

dv

dρ
+

(
2E

ℏω
− ρ2

)
v(ρ) = 0. (3)

If ρ is really large, on the other hand, then the second term is negligible.

ρ ≫ 1 :
d2v

dρ2
+

(
2E

ℏω
− ρ2

)
v(ρ) = 0

This is the same ODE encountered in the harmonic oscillator analysis on page 48. The fraction
2E/(ℏω) is also negligible compared to ρ2, leading to the approximate solution
v(ρ) = C2e

−ρ2/2 +D2e
ρ2/2. For the solution not to blow up, set D2 = 0. The next substitution is

apparent.
v(ρ) = e−ρ2/2w(ρ)

Equation (3) becomes

d2

dρ2
[e−ρ2/2w(ρ)] +

2

ρ
(ℓ+ 1)

d

dρ
[e−ρ2/2w(ρ)] +

(
2E

ℏω
− ρ2

)
[e−ρ2/2w(ρ)] = 0

{e−ρ2/2[w′′ − 2ρw′ + (ρ2 − 1)w]}+ 2

ρ
(ℓ+ 1)[e−ρ2/2(w′ − ρw)] +

(
2E

ℏω
− ρ2

)
[e−ρ2/2w(ρ)] = 0

d2w

dρ2
+

[
2

ρ
(ℓ+ 1)− 2ρ

]
dw

dρ
+

[
2E

ℏω
− 1− 2(ℓ+ 1)

]
w(ρ) = 0

ρ
d2w

dρ2
+ 2[(ℓ+ 1)− ρ2]

dw

dρ
+ (ε− 2ℓ− 3)ρw(ρ) = 0, 0 < ρ < ∞, (4)

where ε = 2E/(ℏω). A series solution to this ODE is sought with respect to ρ = 0. Since ρ = 0 is
a regular singular point, it’s mathematically proper to use a Frobenius series rather than a Taylor
series.

w(ρ) = ργ
∞∑
j=0

cjρ
j =

∞∑
j=0

cjρ
j+γ , c0 ̸= 0

dw

dρ
=

∞∑
j=0

cj(j + γ)ρj+γ−1

d2w

dρ2
=

∞∑
j=0

cj(j + γ)(j + γ − 1)ρj+γ−2
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Substitute these formulas into equation (4).

0 = ρ
∞∑
j=0

cj(j + γ)(j + γ − 1)ρj+γ−2 + 2[(ℓ+ 1)− ρ2]
∞∑
j=0

cj(j + γ)ρj+γ−1 + (ε− 2ℓ− 3)ρ
∞∑
j=0

cjρ
j+γ

=
∞∑
j=0

cj(j + γ)(j + γ − 1)ρj+γ−1 + 2[(ℓ+ 1)− ρ2]
∞∑
j=0

cj(j + γ)ρj+γ−1 + (ε− 2ℓ− 3)
∞∑
j=0

cjρ
j+γ+1

=
∞∑
j=0

cj(j + γ)(j + γ − 1)ρj+γ−1 + 2(ℓ+ 1)
∞∑
j=0

cj(j + γ)ρj+γ−1

− 2
∞∑
j=0

cj(j + γ)ρj+γ+1 + (ε− 2ℓ− 3)
∞∑
j=0

cjρ
j+γ+1

= c0(γ)(γ − 1)ργ−1 + c1(γ + 1)(γ)ργ + 2(ℓ+ 1)[c0(γ)ρ
γ−1 + c1(γ + 1)ργ ]

+
∞∑
j=2

cj(j + γ)(j + γ − 1)ρj+γ−1 + 2(ℓ+ 1)
∞∑
j=2

cj(j + γ)ρj+γ−1

− 2
∞∑
j=0

cj(j + γ)ρj+γ+1 + (ε− 2ℓ− 3)
∞∑
j=0

cjρ
j+γ+1

Factor the terms in the first line in powers of ρ, make the substitution j = k + 2 in the sums that
start from 2, and make the substitution j = k in the sums that start from 0.

0 = c0γ[(γ − 1) + 2(ℓ+ 1)]ργ−1 + c1(γ + 1)[γ + 2(ℓ+ 1)]ργ

+
∞∑

k+2=2

ck+2(k + 2 + γ)(k + γ + 1)ρk+γ+1 + 2(ℓ+ 1)
∞∑

k+2=2

ck+2(k + 2 + γ)ρk+γ+1

− 2

∞∑
k=0

ck(k + γ)ρk+γ+1 + (ε− 2ℓ− 3)

∞∑
k=0

ckρ
k+γ+1

= c0γ(γ + 2ℓ+ 1)ργ−1 + c1(γ + 1)(γ + 2ℓ+ 2)ργ

+

∞∑
k=0

[ck+2(k + 2 + γ)(k + γ + 1) + 2(ℓ+ 1)ck+2(k + 2 + γ)− 2ck(k + γ) + (ε− 2ℓ− 3)ck] ρ
k+γ+1

= c0γ(γ + 2ℓ+ 1)ργ−1 + c1(γ + 1)(γ + 2ℓ+ 2)ργ

+

∞∑
k=0

{ck+2(k + 2 + γ)[(k + γ + 1) + 2(ℓ+ 1)]− ck[2(k + γ)− (ε− 2ℓ− 3)]} ρk+γ+1

= c0γ(γ + 2ℓ+ 1)ργ−1 + c1(γ + 1)(γ + 2ℓ+ 2)ργ

+
∞∑
k=0

[ck+2(k + 2 + γ)(k + γ + 2ℓ+ 3)− ck(2k + 2γ − ε+ 2ℓ+ 3)] ρk+γ+1
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Match the coefficients of the powers of ρ on both sides.

c0γ(γ + 2ℓ+ 1) = 0

c1(γ + 1)(γ + 2ℓ+ 2) = 0

ck+2(k + 2 + γ)(k + γ + 2ℓ+ 3)− ck(2k + 2γ − ε+ 2ℓ+ 3) = 0


Since c0 is assumed to be the first nonzero coefficient of the series, divide both sides of the first
equation by c0.

γ(γ + 2ℓ+ 1) = 0

γ = 0 or γ = −1− 2ℓ

γ = −1− 2ℓ is physically irrelevant because the first term in the series for w(ρ) is c0ρ
γ , and w(ρ)

has to be finite as ρ → 0 and ρ → ∞. The values of γ obtained by solving the second equation are
irrelevant not only because they’re negative, but also because the first equation can’t be satisfied
with c0 ̸= 0. Setting γ = 0 in the third equation gives

ck+2(k + 2)(k + 2ℓ+ 3)− ck(2k − ε+ 2ℓ+ 3) = 0

ck+2(k + 2)(k + 2ℓ+ 3) = (2k − ε+ 2ℓ+ 3)ck

ck+2 =
2k − ε+ 2ℓ+ 3

(k + 2)(k + 2ℓ+ 3)
ck, k ≥ 0

for the recursion formula. Setting γ = 0 in the second equation gives

c1(1)(2ℓ+ 2) = 0 ⇒ c1 = 0,

which means all odd coefficients (c1, c3, c5, . . . ) are zero. Consider what happens now when k is
large—the terms that do not have k are negligibly small.

ck+2 ≈
2k

(k)(k)
ck =

(
2

k

)
ck, k ≫ 1

Consequently,

ck+4 = c(k+2)+2 ≈
(

2

k + 2

)
ck+2 ≈

(
2

k + 2

)(
2

k

)
ck

ck+6 = c(k+4)+2 ≈
(

2

k + 4

)
ck+4 ≈

(
2

k + 4

)(
2

k + 2

)(
2

k

)
ck

ck+8 = c(k+6)+2 ≈
(

2

k + 6

)
ck+6 ≈

(
2

k + 6

)(
2

k + 4

)(
2

k + 2

)(
2

k

)
ck

...

for k ≫ 1.
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The series solution is then

w(ρ) = ρ0
∞∑
j=0

cjρ
j

= c0 +��c1ρ+ c2ρ
2 +���c3ρ

3 + c4ρ
4 + · · ·+ ckρ

k +�����
ck+1ρ

k+1 + ck+2ρ
k+2 + · · ·

= c0 + c2ρ
2 + c4ρ

4 + · · ·+ ckρ
k + ck+2ρ

k+2 + ck+4ρ
k+4 + ck+6ρ

k+6 + ck+8ρ
k+8 + · · ·

≈ c0 + c2ρ
2 + c4ρ

4 + · · ·+ ckρ
k +

(
2

k

)
ckρ

k+2 +

(
2

k + 2

)(
2

k

)
ckρ

k+4

+

(
2

k + 4

)(
2

k + 2

)(
2

k

)
ckρ

k+6 +

(
2

k + 6

)(
2

k + 4

)(
2

k + 2

)(
2

k

)
ckρ

k+8 + · · ·

≈ c0 + c2ρ
2 + c4ρ

4 + · · ·+ ckρ
k +

(
1
k
2

)
ckρ

k+2 +

(
1

k
2 + 1

)(
1
k
2

)
ckρ

k+4

+

(
1

k
2 + 2

)(
1

k
2 + 1

)(
1
k
2

)
ckρ

k+6 +

(
1

k
2 + 3

)(
1

k
2 + 2

)(
1

k
2 + 1

)(
1
k
2

)
ckρ

k+8 + · · ·

≈ c0 + c2ρ
2 + c4ρ

4 + · · ·+ ckρ
k + ckρ

2

(
1
k
2

)
ρk + ckρ

4

(
1

k
2 + 1

)(
1
k
2

)
ρk

+ ckρ
6

(
1

k
2 + 2

)(
1

k
2 + 1

)(
1
k
2

)
ρk + ckρ

8

(
1

k
2 + 3

)(
1

k
2 + 2

)(
1

k
2 + 1

)(
1
k
2

)
ρk + · · · .

Make the substitution l = k/2, or k = 2l.

w(ρ) ≈ c0 + c2ρ
2 + c4ρ

4 + · · ·+ c2lρ
2l + c2lρ

2

(
1

l

)
ρ2l + c2lρ

4

(
1

l + 1

)(
1

l

)
ρ2l

+ c2lρ
6

(
1

l + 2

)(
1

l + 1

)(
1

l

)
ρ2l + c2lρ

8

(
1

l + 3

)(
1

l + 2

)(
1

l + 1

)(
1

l

)
ρ2l + · · ·

≈ c0 + c2ρ
2 + c4ρ

4 + · · ·+ c2l(ρ
2)l + c2lρ

2

(
1

l

)
(ρ2)l + c2lρ

4

(
1

l + 1

)(
1

l

)
(ρ2)l

+ c2lρ
6

(
1

l + 2

)(
1

l + 1

)(
1

l

)
(ρ2)l + c2lρ

8

(
1

l + 3

)(
1

l + 2

)(
1

l + 1

)(
1

l

)
(ρ2)l + · · ·

Based on the form of these terms in the sum involving l, the most rapidly changing component of
the leading behavior of w(ρ) as ρ → ∞ is suspected to be eρ

2
. To show this, notice from the ODE

for w(ρ) in equation (4) that ∞ is an irregular singular point, and apply the method of dominant
balance to determine how w(ρ) blows up as w → ∞. Start by making the standard substitution
w(ρ) = eS(ρ) in equation (4); use the chain rule to write formulas for the derivatives in terms of
this new variable.

dw

dρ
= eS(ρ)S′

d2w

dρ2
= eS(ρ)(S′)2 + eS(ρ)S′′ = eS(ρ)[(S′)2 + S′′]
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As a result, equation (4) becomes

ρeS(ρ)[(S′)2 + S′′] + 2[(ℓ+ 1)− ρ2]eS(ρ)S′ + (ε− 2ℓ− 3)ρeS(ρ) = 0.

Divide both sides by eS(ρ).

ρ[(S′)2 + S′′] + 2[(ℓ+ 1)− ρ2]S′ + (ε− 2ℓ− 3)ρ = 0

In the limit as ρ → ∞, S′ and S′′ are assumed to have the same order of magnitude, so
(S′)2 ≫ S′′ and ρ2 ≫ (ℓ+ 1).

ρ → ∞ : ρ(S′)2 − 2ρ2S′ ∼ (2ℓ+ 3− ε)ρ

Solve this asymptotic differential equation for S.

(S′)2 ∼ 2ρS′ + (2ℓ+ 3− ε)

S′ ∼
2ρ±

√
4ρ2 + 4(2ℓ+ 3− ε)

2

4(2ℓ+ 3− ε) is negligible compared to 4ρ2.

S′ ∼ 2ρ±
√

4ρ2

2

S′ ∼ 2ρ

S ∼ ρ2

Fortunately, S(ρ) ∼ ρ2 as ρ → ∞ is consistent with the assumption that (S′)2 ≫ S′′ as ρ → ∞, so
no further analysis is needed; the most rapidly changing component of the leading behavior of
w(ρ) as ρ → ∞ is in fact eρ

2
. Then

v(ρ) = e−ρ2/2w(ρ)

increases as eρ
2/2, which blows up as ρ → ∞. For there to be a physically realistic solution, the

series solution for w(ρ) must terminate at some maximum even value of the index. This can only
happen if the numerator of the boxed recursion relation is zero for some even value of k:
kmax = 2N , where N = 0, 1, 2, . . ..

2kmax − ε+ 2ℓ+ 3 = 0

ε = 2kmax + 2ℓ+ 3

2E

ℏω
= 2(2N) + 2ℓ+ 3

E = ℏω
(
2N + ℓ+

3

2

)
Therefore, using a new constant n = 2N + ℓ,

En = ℏω
(
n+

3

2

)
, n = 0, 1, 2, . . . .
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As Mr. Griffiths notes, n starts at zero for the harmonic oscillator; this is because both N and ℓ
start from zero. For a given ℓ, there are multiple stationary states with the same energy—one
with m = −ℓ, another with m = −ℓ+ 1, and so on until m = ℓ. Recall that degenerate states
(DSs) are states that have the same energy.

If n = 0, then (N = 0 and ℓ = 0︸ ︷︷ ︸
1

), meaning there is one degenerate state—the ground state.

If n = 1, then (N = 0 and ℓ = 1︸ ︷︷ ︸
3

), meaning there are three DSs.

If n = 2, then (N = 0 and ℓ = 2︸ ︷︷ ︸
5

) or (N = 1 and ℓ = 0︸ ︷︷ ︸
1

), meaning there are six DSs.

If n = 3, then (N = 0 and ℓ = 3︸ ︷︷ ︸
7

) or (N = 1 and ℓ = 1︸ ︷︷ ︸
3

), meaning there are ten DSs.

If n = 4, then (N = 0 and ℓ = 4︸ ︷︷ ︸
9

) or (N = 1 and ℓ = 2︸ ︷︷ ︸
5

) or (N = 2 and ℓ = 0︸ ︷︷ ︸
1

), meaning there are 15 DSs.

If n = 5, then (N = 0 and ℓ = 5︸ ︷︷ ︸
11

) or (N = 1 and ℓ = 3︸ ︷︷ ︸
7

) or (N = 2 and ℓ = 1︸ ︷︷ ︸
3

), meaning there are 21 DSs.

As a result, d0 = 1, d1 = 3, d2 = 6, and d3 = 10. Notice that to get d1, 2 needs to be added to d0;
to get d2, 3 needs to be added to d1; and to get d3, 4 needs to be added to d2. The pattern is
apparent for dn+1.

dn+1 = (n+ 2) + dn, d0 = 1

This is a recurrence relation, more specifically an inhomogeneous first-order linear difference
equation with constant coefficients. Bring dn to the left side.

dn+1 − dn = n+ 2

The left side is how the discrete derivative of a function dn of the integers is defined.

Ddn = n+ 2

Take the discrete antiderivative of both sides by summing from 0 to n− 1.

n−1∑
q=0

Ddq =

n−1∑
q=0

(q + 2)

Dd0 +Dd1 +Dd2 + · · ·+Ddn−2 +Ddn−1 =

n−1∑
q=0

q +
n−1∑
q=0

2

(d1 − d0) + (d2 − d1) + · · ·+ (dn−1 − dn−2) + (dn − dn−1) = 0 +
n−1∑
q=1

q + 2
n−1∑
q=0

1

dn − d0 =
(n− 1)[(n− 1) + 1]

2
+ 2[(n− 1) + 1]
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Simplify the right side and solve for dn.

dn − 1 =
(n− 1)n

2
+ 2n

dn − 1 =
n2 + 3n

2

dn =
n2 + 3n+ 2

2

Therefore, the degeneracy of energy En is

dn =
(n+ 2)(n+ 1)

2
.

Below is an energy-level diagram.

www.stemjock.com


